Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

OCLC: 213839473 ISBN-10: 0123740975 ; ISBN-13: 978-0123740977 CONTENTS: Introduction; Site-occupancy models; Closed population models; Modelling individual effects in closed populations; Abundance as a state variable; Abundance as a state variable; Dynamic site occupancy models; Cormack-Jolly-Seber models; Jolly-Seber models; Animal community models; Occupancy models with spatial dynamics; Open models for animal communities; Temporaly dynamic models for abundance; Other potential topics; Statistical concepts and philosophy; Appendices (online or in text) Appendix 1: R-tutorial, Sample R-functions for implementing several methods Appendix 2: WinBUGS tutorial and R2WinBUGS package Appendix 3:Sample WinBUGS and R-scripts for examples used in book


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS


A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

Additional publication details

Publication type:
Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities
Year Published:
Academic Press
Publisher location:
San Diego, California
Contributing office(s):
Patuxent Wildlife Research Center
xviii, 444