Empirical Bayes estimation of proportions with application to cowbird parasitism rates





Bayesian models provide a structure for studying collections of parameters such as are considered in the investigation of communities, ecosystems, and landscapes. This structure allows for improved estimation of individual parameters, by considering them in the context of a group of related parameters. Individual estimates are differentially adjusted toward an overall mean, with the magnitude of their adjustment based on their precision. Consequently, Bayesian estimation allows for a more credible identification of extreme values in a collection of estimates. Bayesian models regard individual parameters as values sampled from a specified probability distribution, called a prior. The requirement that the prior be known is often regarded as an unattractive feature of Bayesian analysis and may be the reason why Bayesian analyses are not frequently applied in ecological studies. Empirical Bayes methods provide an alternative approach that incorporates the structural advantages of Bayesian models while requiring a less stringent specification of prior knowledge. Rather than requiring that the prior distribution be known, empirical Bayes methods require only that it be in a certain family of distributions, indexed by hyperparameters that can be estimated from the available data. This structure is of interest per se, in addition to its value in allowing for improved estimation of individual parameters; for example, hypotheses regarding the existence of distinct subgroups in a collection of parameters can be considered under the empirical Bayes framework by allowing the hyperparameters to vary among subgroups. Though empirical Bayes methods have been applied in a variety of contexts, they have received little attention in the ecological literature. We describe the empirical Bayes approach in application to estimation of proportions, using data obtained in a community-wide study of cowbird parasitism rates for illustration. Since observed proportions based on small sample sizes are heavily adjusted toward the mean, extreme values among empirical Bayes estimates identify those species for which there is the greatest evidence of extreme parasitism rates. Applying a subgroup analysis to our data on cowbird parasitism rates, we conclude that parasitism rates for Neotropical Migrants as a group are no greater than those of Resident/Short-distance Migrant species in this forest community. Our data and analyses demonstrate that the parasitism rates for certain Neotropical Migrant species are remarkably low (Wood Thrush and Rose-breasted Grosbeak) while those for others are remarkably high (Ovenbird and Red-eyed Vireo).

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Empirical Bayes estimation of proportions with application to cowbird parasitism rates
Series title:
Year Published:
Contributing office(s):
Patuxent Wildlife Research Center
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
First page:
Last page: