On the in situ aqueous alteration of soils on Mars

Geochimica et Cosmochimica Acta
By: , and 

Links

Abstract

Early (>3 Gy) wetter climate conditions on Mars have been proposed, and it is thus likely that pedogenic processes have occurred there at some point in the past. Soil and rock chemistry of the Martian landing sites were evaluated to test the hypothesis that in situ aqueous alteration and downward movement of solutes have been among the processes that have transformed these portions of the Mars regolith. A geochemical mass balance shows that Martian soils at three landing sites have lost significant quantities of major rock-forming elements and have gained elements that are likely present as soluble ions. The loss of elements is interpreted to have occurred during an earlier stage(s) of weathering that may have been accompanied by the downward transport of weathering products, and the salts are interpreted to be emplaced later in a drier Mars history. Chemical differences exist among the sites, indicating regional differences in soil composition. Shallow soil profile excavations at Gusev crater are consistent with late stage downward migration of salts, implying the presence of small amounts of liquid water even in relatively recent Martian history. While the mechanisms for chemical weathering and salt additions on Mars remain unclear, the soil chemistry appears to record a decline in leaching efficiency. A deep sedimentary exposure at Endurance crater contains complex depth profiles of SO4, Cl, and Br, trends generally consistent with downward aqueous transport accompanied by drying. While no model for the origin of Martian soils can be fully constrained with the currently available data, a pedogenic origin is consistent with observed Martian geology and geochemistry, and provides a testable hypothesis that can be evaluated with present and future data from the Mars surface. ?? 2008 Elsevier Ltd.
Publication type Article
Publication Subtype Journal Article
Title On the in situ aqueous alteration of soils on Mars
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/j.gca.2008.04.038
Volume 72
Issue 15
Year Published 2008
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geochimica et Cosmochimica Acta
First page 3845
Last page 3864
Google Analytic Metrics Metrics page
Additional publication details