thumbnail

Linking runoff response to burn severity after a wildfire

Hydrological Processes

By:
, , ,
DOI: 10.1002/hyp.6806

Links

Abstract

Extreme floods often follow wildfire in mountainous watersheds. However, a quantitative relation between the runoff response and burn severity at the watershed scale has not been established. Runoff response was measured as the runoff coefficient C, which is equal to the peak discharge per unit drainage area divided by the average maximum 30 min rainfall intensity during each rain storm. The magnitude of the bum severity was expressed as the change in the normalized burn ratio. A new burn severity variable, hydraulic functional connectivity ?? was developed and incorporates both the magnitude of the burn severity and the spatial sequence of the bum severity along hillslope flow paths. The runoff response and the burn severity were measured in seven subwatersheds (0.24 to 0.85 km2) in the upper part of Rendija Canyon burned by the 2000 Cerro Grande Fire Dear Los Alamos, New Mexico, USA. A rainfall-discharge relation was determined for four of the subwatersheds with nearly the same bum severity. The peak discharge per unit drainage area Qupeak was a linear function of the maximum 30 min rainfall intensity I30. This function predicted a rainfall intensity threshold of 8.5 mm h-1 below which no runoff was generated. The runoff coefficient C = Qupeak/I30 was a linear function of the mean hydraulic functional connectivity of the subwatersheds. Moreover, the variability of the mean hydraulic functional connectivity was related to the variability of the mean runoff coefficient, and this relation provides physical insight into why the runoff response from the same subwatershed can vary for different rainstorms with the same rainfall intensity. Published in 2007 by John Wiley & Sons, Ltd.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Linking runoff response to burn severity after a wildfire
Series title:
Hydrological Processes
DOI:
10.1002/hyp.6806
Volume
22
Issue:
13
Year Published:
2008
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
2063
Last page:
2074