Induced dynamic nonlinear ground response at Gamer Valley, California

Bulletin of the Seismological Society of America
By: , and 

Links

Abstract

We present results from a prototype experiment in which we actively induce, observe, and quantify in situ nonlinear sediment response in the near surface. This experiment was part of a suite of experiments conducted during August 2004 in Garner Valley, California, using a large mobile shaker truck from the Network for Earthquake Engineering Simulation (NEES) facility. We deployed a dense accelerometer array within meters of the mobile shaker truck to replicate a controlled, laboratory-style soil dynamics experiment in order to observe wave-amplitude-dependent sediment properties. Ground motion exceeding 1g acceleration was produced near the shaker truck. The wave field was dominated by Rayleigh surface waves and ground motions were strong enough to produce observable nonlinear changes in wave velocity. We found that as the force load of the shaker increased, the Rayleigh-wave phase velocity decreased by as much as ???30% at the highest frequencies used (up to 30 Hz). Phase velocity dispersion curves were inverted for S-wave velocity as a function of depth using a simple isotropic elastic model to estimate the depth dependence of changes to the velocity structure. The greatest change in velocity occurred nearest the surface, within the upper 4 m. These estimated S-wave velocity values were used with estimates of surface strain to compare with laboratory-based shear modulus reduction measurements from the same site. Our results suggest that it may be possible to characterize nonlinear soil properties in situ using a noninvasive field technique.
Publication type Article
Publication Subtype Journal Article
Title Induced dynamic nonlinear ground response at Gamer Valley, California
Series title Bulletin of the Seismological Society of America
DOI 10.1785/0120070124
Volume 98
Issue 3
Year Published 2008
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Bulletin of the Seismological Society of America
First page 1412
Last page 1428
Google Analytic Metrics Metrics page
Additional publication details