thumbnail

Sedimentation and deformation in the Amlia Fracture Zone sector of the Aleutian Trench

Marine Geology

By:
, , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

A wedge-shaped, landward thickening mass of sedimentary deposits composed chiefly of terrigenous turbidite beds underlies the west-south west-trending Amlia sector (172??20???-173??30???W) of the Aleutian Trench. Pacific oceanic crust dips northward beneath the sector's sedimentary wedge and obliquely underthrusts (30?? off normal) the adjacent Aleutian Ridge. The trench floor and subsurface strata dip gently northward toward the base of the inner trench slope. The dip of the trench deposits increases downsection from about 0.2?? at the trench floor to as much as 6-7?? just above basement. The wedge is typically 2-2.5 km thick, but it is thickest (3.7-4.0 km) near the base of the inner slope overlying the north-trending Amlia Fracture Zone and also east of this structure. Slight undulations and relatively abrupt offsets of the trench floor reflect subsurface and generally west-trending structures within the wedge that are superimposed above ridges and swales in the underlying oceanic basement. The southern or seaward side of some of these structures are bordered by high-angle faults or abrupt flexures. Across these offsets the northern side of the trench floor and underlying wedge is typically upthrown. West-flowing turbidity currents originating along the Alaskan segment of the trench (1200 km to the east) probably formed the greater part of the Amlia wedge during the past 0.5 m.y. The gentle northward or cross-trench inclination of the trench floor and underlying wedge probably reflects regional downbending of the oceanic lithosphere and trench-floor basement faulting and rotation. Much of the undulatory flexuring of the trench wedge can be attributed to differential compaction over buried basement relief. However, abrupt structural offsets attest to basement faulting. Faulting is associated with extensional earthquakes in the upper crust. The west-trending basement offsets are probably normal faults that dip steeply south or antithetic to the north dip of the subducting oceanic crust. Up-to-arc extensional faulting can be attributed to the downbending of the Pacific plate into the Aleutian subduction zone. The rupturing direction and dip is controlled by zones of crustal weakness that parallel north Pacific magnetic anomalies, which were formed south of a late Cretaceous-early Tertiary spreading center (Kula-Pacific Ridge). The strike of these anomalies is fortuitously nearly parallel to the Amlia sector. The up-to-arc fracturing style may locally assist in elevating blocks of trench deposits to form the toe of the trench's landward slope, which is in part underlain by a compressionally thickened accretionary mass of older trench deposits. Compressional structures that can be related to underthrusting are only indistinctly recorded in the turbidite wedge that underlies the trench floor. ?? 1982.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Sedimentation and deformation in the Amlia Fracture Zone sector of the Aleutian Trench
Series title:
Marine Geology
Volume
48
Issue:
1-2
Year Published:
1982
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Marine Geology
First page:
105
Last page:
134
Number of Pages:
30