thumbnail

Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules

Tectonophysics

By:
, , , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Seven siderophile elements (Au, Ge, Ir, Ni, Pd, Os, Re) were determined by radiochemical neutron activation analysis in 19 ultramafic rocks, which are spinel lherzollites-xenoliths from North and Central America, Hawaii and Australia, and garnet Iherzolitexenoliths from Lesotho. Abundances of the platinum metals are very uniform in spinel lherzolites averaging 3.4 ?? 1.2 ppb Os, 3.7 ?? 1.1 ppb Ir, and 4.6 ?? 2.0 ppb Pd. Sheared garnet lherzolite PHN 1611 has similar abundances of these elements, but in 4 granulated garnet lherzolites, abundances are more variable. In all samples, the Pt metals retain cosmic ( Cl-chondrite) ratios. Abundances of Au and Re vary more than those of Pt metals, but the Au/Re ratio remains close to the cosmic value. The fact that higher values of Au and Re approach cosmic proportions with respect to the Pt metals, suggests that Au and Re have been depleted in some ultramafic rocks from an initially chondrite-like pattern equivalent to about 0.01 of Cl chondrite abundances. The relative enrichment of Au and Re in crustal rocks is apparently the result of crust-mantle fractionation and does not require a special circumstance of core-mantle partitioning. Abundances of moderately volatile elements Ni, Co and Ge are very uniform in all rocks, and are much higher than those of the highly siderophile elements Au, Ir, Pd, Os and Re. When normalized to Cl chondrites, abundances of Ni and Co are nearly identical, averaging 0.20 ?? 0.02 and 0.22 ?? 0.02, respectively; but Ge is only 0.027 ?? 0.004. The low abundance of Ge relative to Ni and Co is apparently a reflection of the general depletion of volatile elements in the Earth. The moderately siderophile elements cannot be derived from the same source as the highly siderophile elements because of the marked difference in Cl chondrite-normalized abundances and patterns. We suggest that most of the Ni, Co and Ge were enriched in the silicate by the partial oxidation of pre-existing volatile-poor Fe-Ni, whereas the corresponding highly siderophile elements remained sequestered by the surviving metal. The highly siderophile elements may have been introduced by a population of ~103 large (~1022 g) planetisimals, similar to those forming the lunar mare basins. ?? 1981.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Composition of the earth's upper mantle-I. Siderophile trace elements in ultramafic nodules
Series title:
Tectonophysics
Volume
75
Issue:
1-2
Year Published:
1981
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Tectonophysics
First page:
47
Last page:
67