thumbnail

Induction of auroral zone electric currents within the Alaska pipeline

Pure and Applied Geophysics PAGEOPH

By:
DOI: 10.1007/BF00874677

Links

Abstract

The Alaskar pipeline is a highly conducting anomaly extending 800 miles (1300 km) from about 62?? to 69?? geomagnetic latitude beneath the most active regions of the ionospheric electrojet current. The spectral behavior of the magnetic field from this current was analyzed using data from standard geomagnetic observatories to establish the predictable patterns of temporal and spatial changes for field pulsation periods between 5 min and 4 hr. Such behavior is presented in a series of tables, graphs and formulae. Using 2- and 3-layer models of the conducting earth, the induced electric fields associated with the geomagnetic changes were established. From the direct relationship of the current to the geomagnetic field variation patterns one can infer counterpart temporal and spatial characteristics of the pipeline current. The relationship of the field amplitudes to geomagnetic activity indices, Ap, and the established occurrence of various levels of Ap over several solar cycles were employed to show that about half of the time the induced currents in the pipe would be under 1 A for the maximum response oscillatory periods near 1 hr. Such currents should be of minimal consequence in corrosion effects for even a section of the pipeline unprotected by sacrificial electrodes. Of greater interest was the result that the extreme surges of current should reach over one-hundred amperes in the pipeline during high activity. ?? 1978 Birkha??user Verlag.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Induction of auroral zone electric currents within the Alaska pipeline
Series title:
Pure and Applied Geophysics PAGEOPH
DOI:
10.1007/BF00874677
Volume
116
Issue:
6
Year Published:
1978
Language:
English
Publisher location:
Birkha??user-Verlag
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Pure and Applied Geophysics PAGEOPH
First page:
1143
Last page:
1173