Possible fossil H2O liquid-ice interfaces in the Martian crust




  • The Publications Warehouse does not have links to digital versions of this publication at this time


Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites. ?? 1978.

Additional Publication Details

Publication type:
Publication Subtype:
Journal Article
Possible fossil H2O liquid-ice interfaces in the Martian crust
Series title:
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
First page:
Last page:
Number of Pages: