Effect of anisotropy and groundwater system geometry on seepage through lakebeds. 1. Analog and dimensional analysis

Journal of Hydrology
By:  and 

Links

Abstract

Distribution of seepage through lakebeds is controlled partly by geometric configuration of the lake and of the groundwater system interacting with the lake. To evaluate the effect of these factors, conductive-paper electric-analog models were used to analyze a number of lake and groundwater settings having different geometric configurations. Most settings analyzed are of lakes that do not penetrate the groundwater system. The width ratio, the ratio of half the lake width to thickness of the groundwater system, is the principal geometric characteristic used in this study. Because the distribution of groundwater seepage into a lake is not uniform across the lakebed, the concept of a streamlinecrowding factor is developed, and is used to determine seepage patterns from geometric characteristics of the lake and its contiguous groundwater system. Analysis of fourteen different width ratios of lake and groundwater systems indicates that lakes can be defined by three general groups of seepage patterns, which include flow patterns, volumes and rates: (1) lakes having width ratios less than ∼ 0.6 show relatively uniform distribution of seepage across the lakebed; (2) lakes having width ratios of ∼ 0.6 to ∼ 2.0 change in absolute and relative streamline crowding in the near-shore region; and (3) lakes having width ratios greater than ∼ 2.0 show stable flow patterns near shore; however, with increasing lake width, the relative streamline crowding increases relative to that width. For deep lakes and those in anisotropic media, the crowding effect is decreased, resulting in more uniform seepage across the lakebed.

Publication type Article
Publication Subtype Journal Article
Title Effect of anisotropy and groundwater system geometry on seepage through lakebeds. 1. Analog and dimensional analysis
Series title Journal of Hydrology
DOI 10.1016/0022-1694(84)90051-9
Volume 75
Issue 1-4
Year Published 1984
Language English
Publisher Elsevier
Contributing office(s) Toxic Substances Hydrology Program
Description 25 p.
First page 213
Last page 237
Google Analytic Metrics Metrics page
Additional publication details