Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite

Geochimica et Cosmochimica Acta
By: , and 

Links

Abstract

The heat capacity of synthetic andradite garnet (Ca3Fe2Si3O12) was measured between 9.6 and 365.5 K by cryogenic adiabatic calorimetry and from 340 to 990 K by differential scanning calorimetry. At 298.15 KCop,m and Som are 351.9 ± 0.7 and 316.4 ± 2.0 J/(mol·K), respectively.

Andradite has a λ-peak in Cop,m with a maximum at 11.7 ± 0.2 K which is presumably associated with the antiferromagnetic ordering of the magnetic moments of the Fe3+ ions. The Gibbs free energy of formation,ΔfGom (298.15 K) of andradite is −5414.8 ± 5.5 kJ/mol and was obtained by combining our entropy and heat capacity data with the known breakdown of andradite to pseudowollastonite and hematite at ≈ 1410 to 1438 K. From a reexamination of the calcite + quartz = wollastonite equilibrium data we obtained ΔfHom(298.15 K) = − 1634.5 ± 1.8 kJ/mol for wollastonite.

Between 300 and 1000 K the molar heat capacity of andradite can be represented by the equation Cop,m = 809.24 - 7.025 × 10−2T− 7.403 × 103T−0.5 − 6.789 × 105T−2. We have also used our thermochemical data for andradite to estimate the Gibbs free energy of formation of hedenbergite (CaFeSi2O6) for which we obtained ΔfGom (298.15 K) = −2674.3 ± 5.8 kJ/mol.

Publication type Article
Publication Subtype Journal Article
Title Heat capacity and thermodynamic properties of andradite garnet, Ca3Fe2Si3O12, between 10 and 1000 K and revised values for ΔfGom (298.15 K) of hedenbergite and wollastonite
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/0016-7037(87)90271-7
Volume 51
Issue 8
Year Published 1987
Language English
Publisher Elsevier
Description 6 p.
First page 2219
Last page 2224
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details