Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge

Marine and Petroleum Geology
By: , and 

Links

Abstract

Amlia and Amukta Basins are the largest of many intra-arc basins formed in late Cenozoic time along the crest of the Aleutian Arc. Both basins are grabens filled with 2-5 km of arc-derived sediment. A complex system of normal faults deformed the basinal strata. Although initial deposits of late Micocene age may be non-marine in origin, by early Pliocene time, most of the basinfill consisted of pelagic and hemipelagic debris and terrigenous turbidite deposits derived from wavebase and subaerial erosion of the arc's crestal areas. Late Cenozoic volcanism along the arc commenced during or shortly after initial subsidence and greatly contributed to active deposition in Amlia and Amukta Basins. Two groups of normal faults occur: major boundary faults common to both basins and 'intra-basin' faults that arise primarily from arc-parallel extension of the arc. The most significant boundary fault, Amlia-Amukta fault, is a south-dipping growth fault striking parallel to the trend of the arc. Displacement across this fault forms a large half-graben that is separated into the two depocentres of Amlia and Amukta Basins by the formation of a late Cenozoic volcanic centre, Seguam Island. Faults of the second group reflect regional deformation of the arc and offset the basement floor as well as the overlying basinal section. Intra-basin faults in Amlia Basin are predominantly aligned normal to the trend of the arc, thereby indicating arc-parallel extension. Those in Amukta basin are aligned in multiple orientations and probably indicate a more complex mechanism of faulting. Displacement across intra-basin faults is attributed to tectonic subsidence of the massif, aided by depositional loading within the basins. In addition, most intra-basin faults are listric and are associated with high growth rates. Although, the hydrocarbon potential of Amlia and Amukta Basins is difficult to assess based on existing data, regional considerations imply that an adequate thermal history conducive to hydrocarbon generation has prevailed during the past 6-5 my. The possibility for source rocks existing in the lower sections of the basins is suggested by exposures of middle and upper Miocene carbonaceous mudstone on nearby Atka Island and the implication that euxinic conditions may have prevailed during the initial formation of the basins. Large structures have evolved to trap migrating hydrocarbons, but questions remain concerning the preservation of primary porosity in a sedimentary section rich in reactive volcaniclastic debris. ?? 1987.
Publication type Article
Publication Subtype Journal Article
Title Evolution and petroleum geology of Amlia and Amukta intra-arc summit basins, Aleutian Ridge
Series title Marine and Petroleum Geology
DOI 10.1016/0264-8172(87)90011-0
Volume 4
Issue 4
Year Published 1987
Language English
Publisher Elsevier
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Marine and Petroleum Geology
First page 334
Last page 352
Google Analytic Metrics Metrics page
Additional publication details