thumbnail

STOCHASTIC ANALYSIS OF THREE-DIMENSIONAL FLOW IN A BOUNDED DOMAIN.

Water Resources Research

By:
and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated sapatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three-dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
STOCHASTIC ANALYSIS OF THREE-DIMENSIONAL FLOW IN A BOUNDED DOMAIN.
Series title:
Water Resources Research
Volume
22
Issue:
5
Year Published:
1986
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Water Resources Research
First page:
695
Last page:
704
Number of Pages:
10