thumbnail

Dikes, joints, and faults in the upper mantle

Tectonophysics
By:  and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Three different types of macroscopic fractures are recognized in upper-mantle and lower-crustal xenoliths in volcanic rocks from around the world: 1. (1) joints that are tensile fractures not occupied by crystallized magma products 2. (2) dikes that are tensile fractures occupied by mafic magmas crystallized to pyroxenites, gabbros or hydrous-mineral-rich rocks, 3. (3) faults that are unfilled shear fractures with surface markings indicative of shear displacement. In addition to intra-xenolith fractures, xenoliths commonly have polygonal or faceted shapes that represent fractures exploited during incorporation of the xenoliths into the host magma that brought them to the surface. The various types of fractures are considered to have formed in response to the pressures associated with magmatic fluids and to the ambient tectonic stress field. The presence of fracture sets and crosscutting relations indicate that both magma-filled and unfilled fractures can be contemporaneous and that the local stress field can change with time, leading to repeated episodes of fracture. These observations give insight into the nature of deep fracture processes and the importance of fluid-peridotite interactions in the mantle. We suggest that unfilled fractures were opened by volatile fluids exsolved from ascending magmas to the tops of growing dikes. These volatile fluids are important because they are of low viscosity and can rapidly transmit fluid pressure to dike and fault tips and because they lower the energy and tectonic stresses required to extend macroscopic cracks and to allow sliding on pre-existing fractures. Mantle seismicity at depths of 20-65 km beneath active volcanic centers in Hawaii corresponds to the depth interval where CO2-rich fluids are expected to be liberated from ascending basaltic magmas, suggesting that such fluids play an important role in facilitating earthquake instabilities in the presence of tectonic stresses. Other phenomena related to the fractures include permeation of peridotite by fluid inclusions derived by degassing of magmas, partial melting of peridotite and dike rocks, and metasomatic alteration of peridotite host rock by magmas emplaced in fractures. These effects of magmatism generally reduce the bulk density of peridotite and might also reduce seismic velocities. The velocity contrasts between fractured and unfractured peridotite might be detected by seismic-velocity profiling techniques. ?? 1989.
Publication type Article
Publication Subtype Journal Article
Title Dikes, joints, and faults in the upper mantle
Series title Tectonophysics
Volume 161
Issue 1-2
Year Published 1989
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Tectonophysics
First page 23
Last page 31
Google Analytic Metrics Metrics page
Additional publication details