thumbnail

Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine

Marine Geology

By:

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Data from seismic-reflection profiles, sidescan sonar images, and sediment samples reveal the Holocene depositional history of the large (1100 km2) glaciated Penobscot Bay estuary of coastal Maine. Previous work has shown that the late Wisconsinan ice sheet retreated from the three main passages of the bay between 12,700 and 13,500 years ago and was accompanied by a marine transgression during which ice and sea were in contact. Isostatic recovery of the crust caused the bay to emerge during the immediate postglacial period, and relative sea level fell to at least -40 m sometime between 9000 and 11,500 years ago. During lowered sea level, the ancestral Penobscot River flowed across the subaerially exposed head of the bay and debouched into Middle Passage. Organic-matter-rich mud from the river was deposited rapidly in remnant, glacially scoured depressions in the lower reaches of Middle and West Passages behind a shallow (???20 m water depth) bedrock sill across the bay mouth. East Passage was isolated from the rest of the bay system and received only small amounts of locally derived fine-grained sediments. During the Holocene transgression that accompanied the eustatic rise of sea level, the locus of sedimentation shifted to the head of the bay. Here, heterogeneous fluvial deposits filled the ancestral valley of the Penobscot River as base level rose, and the migrating surf zone created a gently dipping erosional unconformity, marked by a thin (<2 m) lag deposit of coarse sand and gravel. As sea level continued to rise, a thin (???9 m) layer of acoustically transparent muddy sediments accumulated over a shallow platform in the eastern half of the bay head. Graded sediments within this stratum began to accumulate early in the transgression, and they record both the decrease in energy conditions and the waning influence of the Penobscot River at the head of the bay. In contrast, relatively thick (up to 25 m) silty clays accumulated within a subbottom trough in the western half of the bay head. This deposit apparently developed late in the transgression after sea level had reached -20 m and after the westward transport of fine-grained sediments from the Penobscot River had been established. During and since the late Holocene transgression of sea level, waves and currents have eroded, reworked, and redistributed Holocene sediments: (1) atop the shallow margins; (2) within constricted channels; (3) around topographic highs; and (4) over the shallow bedrock sill at the bay mouth. The variable distribution, characteristics, and thickness (0 to more than 30 m) of Holocene deposits in Penobscot Bay primarily reflect: (1) the irregular glacially eroded bedrock topography beneath the bay; (2) the paleogeography of the bay during the sea-level lowstand; (3) the postglacial location of the ancestral Penobscot River; and (4) the wave and current regime during and since the Holocene sea-level transgression. ?? 1986.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Holocene depositional history of a large glaciated estuary, Penobscot Bay, Maine
Series title:
Marine Geology
Volume
73
Issue:
3-4
Year Published:
1986
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Marine Geology
First page:
215
Last page:
236