thumbnail

PROBLEM OF COMPLEX EIGENSYSTEMS INTHE SEMIANALYTICAL SOLUTION FOR ADVANCEMENT OF TIME IN SOLUTE TRANSPORT SIMULATIONS: A NEW METHOD USING REAL ARITHMETIC.

Water Resources Research

By:
,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

In the numerical modeling of groundwater solute transport, explicit solutions may be obtained for the concentration field at any future time without computing concentrations at intermediate times. The spatial variables are discretized and time is left continuous inthe governing differnetial equation. These semianalytical solutions have been presented in the literature and involve the eigensystem of a coefficient matrix. This eigensystem may be complex (i. e. , have imaginary components) due to the asymmetry created by the advection term in the governing advection-dispersionequation. It is shown here that the error due to ignoring the imaginary components of complex eigenvalues is large for small dispersivity values. A new algorithm that represents the complex eigensystem by converting it to a real eigensystem is presented. The method requires only real arithmetic.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
PROBLEM OF COMPLEX EIGENSYSTEMS INTHE SEMIANALYTICAL SOLUTION FOR ADVANCEMENT OF TIME IN SOLUTE TRANSPORT SIMULATIONS: A NEW METHOD USING REAL ARITHMETIC.
Series title:
Water Resources Research
Volume
22
Issue:
7
Year Published:
1986
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Water Resources Research
First page:
1149
Last page:
1154
Number of Pages:
6