thumbnail

Concordant paleolatitudes from ophiolite sequences in the northern California Coast Ranges, U.S.A.

Tectonophysics
By: , and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Paleomagnetic data have been obtained from two ophiolite sequences in the northern California Coast Ranges: from Mount Diablo in the San Francisco Bay area and from Potter Valley, north of Clear Lake. The ophiolite exposed at Mount Diablo is part of the late Middle to Late Jurassic Coast Range ophiolite, and that exposed near Potter Valley is Late Jurassic to perhaps Early Cretaceous in age and occurs within the Franciscan assemblage. Data from the sheeted-dike complex at Mount Diablo show these rocks to be strongly overprinted, probably following uplift and erosion of the ophiolite. Samples whose primary remanent magnetization seems to be recovered yield a mean paleomagnetic pole at 30.7??N, 159.5??E with ??95 = 5.6??. A comparison of this pole with the Jurassic apparent polar wander path for North America indicates that the ophiolite has rotated 45?? ?? 7?? counterclockwise relative to the craton and has not been latitudinally displaced. The diabase and pillow basalt in Potter Valley have not been strongly overprinted and data from those rocks yield a paleomagnetic pole at 79.0??N, 61.5??E with ??95 = 6.4??. This result indicates that the ophiolite at Potter Valley has rotated approximately 29?? ?? 8?? clockwise, and has undergone little or no latitudinal displacement. Because of the predominantly northeastward transport of oceanic plates converging with the western margin of North America since middle Mesozoic time, the absence of appreciable northward displacement of either ophiolite fragment indicates that both formed close to the continental margin. ?? 1991.
Publication type Article
Publication Subtype Journal Article
Title Concordant paleolatitudes from ophiolite sequences in the northern California Coast Ranges, U.S.A.
Series title Tectonophysics
Volume 198
Issue 1
Year Published 1991
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Tectonophysics
First page 1
Last page 21
Google Analytic Metrics Metrics page
Additional publication details