Amino acid composition of suspended particles, sediment-trap material, and benthic sediment in the Potomac Estuary

Estuaries
By:  and 

Links

Abstract

Sediment trap deployments in estuaries provide a method for estimating the amount of organic material transported to the sediments from the euphotic zone. The amino acid composition of suspended particles, benthic sediment, and sediment-trap material collected at 2.4 m, 5.8 m, and 7.9 m depths in the Potomac Estuary was determined in stratified summer waters, and in well-mixed oxygenated waters (DO) in late fall. The total vertical flow, or flux, of material into the top traps ranged from 3 g m-2 d-1 in August to 4.9 g m-2 d-1 in October. The carbon and nitrogen fluxes increased in the deepest traps relative to the surface traps during both sampling periods, along with that of the total material flux (up to 47.3 g m-2 d-1 in the deepest trap), although the actual weight percent of organic carbon and organic nitrogen decreased with depth. Amino acid concentrations ranged from 129 mg g-1 in surface water particulate material to 22 mg g-1 in particulate material in 9-m-deep waters and in the benthic sediment. Amino acid concentrations from 2.4-mg-depth sediment traps averaged 104??29 mg g-1 in stratified waters and 164??81 mg g-1 in well-mixed waters. The deep trap samples averaed, 77.3??4.8 mg g-1 amino acids in summer waters and 37??16 mg g-1 in oxygenated fall waters. Amino acids comprised 13% to 39% of the organic carbon and 12% to 89% of the orgnaic nitrogen in these samples. Analysis of the flux results suggest that resuspension combined with lateral advection from adjacent slopes can account for up to 27% of the material in the deep traps when the estuary was well-mixed and unstratified. When the estuary was stratified in late summer, the amino acid carbon produced by primary productivity in the euphotic zone decreased by 85% (86% for total organic carbon) at the pycnocline at 6 m depth, leaving up to 15% of the vertical organic flux available for benthic sediment deposition. ?? 1993 Estuarine Research Federation.
Publication type Article
Publication Subtype Journal Article
Title Amino acid composition of suspended particles, sediment-trap material, and benthic sediment in the Potomac Estuary
Series title Estuaries
DOI 10.2307/1352588
Volume 16
Issue 3
Year Published 1993
Language English
Publisher Springer-Verlag
Larger Work Title Estuaries
First page 405
Last page 415
Google Analytic Metrics Metrics page
Additional publication details