thumbnail

Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii

Bulletin of Volcanology

By:
, , , and
DOI: 10.1007/BF00302000

Links

Abstract

The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii
Series title:
Bulletin of Volcanology
DOI:
10.1007/BF00302000
Volume
55
Issue:
6
Year Published:
1993
Language:
English
Publisher location:
Springer-Verlag
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Bulletin of Volcanology
First page:
407
Last page:
413