Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

Journal of Environmental Quality
By:

Links

Abstract

At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

Publication type Article
Publication Subtype Journal Article
Title Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts
Series title Journal of Environmental Quality
DOI 10.2134/jeq1994.00472425002300050019x
Volume 23
Issue 5
Year Published 1994
Language English
Publisher Wiley
Description 10 p.
First page 977
Last page 986
Google Analytic Metrics Metrics page
Additional publication details