Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence

Geochimica et Cosmochimica Acta
By: , and 

Links

Abstract

Molybdenum K-edge EXAFS (extended X-ray absorption fine structure) spectra yield new structural information about the chemical environment of Mo in high-Mo black shales and sediments. Two spectral types are found. The less common one, associated with Mo ores developed in shale in China, is that of a MoS2 phase, possibly X-ray amorphous jordisite. The other, associated with Cretaceous deep sea sediments and with other black shales, is characterized by short Mo-O distances (1.69-1.71 A??), by Mo-S distances of 2.30-2.38 A??, and in some cases by second shell Mo and Fe interactions, which suggests that some Mo resides in transition metal-rich phases. EXAFS spectra of synthetic amorphous materials, prepared by scavenging Mo from HS solutions with Fe(II), FeOOH, and humic acid, suggest that the second spectral type arises from Mo present chiefly in two forms. One is a compact, Mo-Fe-S "cubane" type compound with Mo-S distances of ???2.36 A?? and Mo-Fe distances of ???2.66 A??, while the other is probably an organic form containing some Mo-O double bonds (???1.69 A??). Laboratory products, that were prepared by scavenging dissolved Mo from sulfidic solutions with humic acid, yield spectra quite similar to the second spectral type observed in shales and sediments, including unexpected indications of Mo-Fe interactions. Molybdenum L-edge spectra indicate that the mean oxidation state in the sediments and shales lies between IV and VI. This work demonstrates the merit of EXAFS for obtaining structural information on natural materials containing X-ray amorphous components which defeat conventional mineralogical characterization. The implications of these findings regarding Mo scavenging from sulfidic natural waters are considered. We introduce the concept of a geochemical switch, in which HS- transforms the marine behavior of Mo from that of a conservative element to that of a particle reactive element. The action point of the HS- switch is calculated to be, aHS- = 10-3.6 - 10-4.3. When aHS- approaches the action point, Mo becomes reactive to particles containing transition metals (e.g., Fe). We conjecture that thiols, including humic-bound thiol groups, also switch Mo behavior. In contrast to previous ideas, our model for Mo scavenging deemphasizes the role of reduction from Mo(VI) to Mo(V) as the initial step in scavenging; instead, we emphasize the ease with which Mo forms covalent bonds to transition metals and organic molecules via S bridges.
Publication type Article
Publication Subtype Journal Article
Title Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/0016-7037(96)00195-0
Volume 60
Issue 19
Year Published 1996
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geochimica et Cosmochimica Acta
First page 3631
Last page 3642
Google Analytic Metrics Metrics page
Additional publication details