thumbnail

Preferential flow and segregation of porewater solutes in Wetland sediment

Estuaries

By:
, , and
DOI: 10.1007/BF02690138

Links

Abstract

Sediment macropores (with effective diameters larger than 100 ??m) comprise 11% of the bulk sediment volume in a tidal freshwater wetland vegetated with Peltandra virginica. In order to determine effects of macroporous sediment structure on solute transport, we conducted a solute tracer experiment in the sediment. The effective transport volume (??eff, the volume of sediment through which solute was transported normalized to sediment bulk volume) was 0.15 cm3 cm-3, which is considerably smaller than the total pore space that is potentially available for transport (porosity of sediment is 0.63 cm3 cm-3). A mean transport time of 13 d was required to flush preferential flow paths in Peltandra hummocks; hydrologic turnover of the volumetrically dominant matrix pores (0.53 cm3 cm-3) was apparently much slower. Based on porewater sampler design and hydrological principles, we suggest that N2-purged tension solution samplers and diffusion equilibrators preferentially sample porewater from macropore and matrix domains, respectively. Dissolved ammonium and orthophosphate concentrations were three-fold higher in matrix pores compared to macropores, which is consistent with our finding that more rapid hydrological flushing occurred in macropores compared to matrix pores. Further evaluation of porewater sampler designs in macroporous sediment is needed to improve studies of hydrologic transport and biogeochemical cycling in wetlands. ?? 1995 Estuarine Research Federation.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Preferential flow and segregation of porewater solutes in Wetland sediment
Series title:
Estuaries
DOI:
10.1007/BF02690138
Volume
18
Issue:
4
Year Published:
1995
Language:
English
Publisher location:
Springer-Verlag
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Estuaries
First page:
568
Last page:
578