thumbnail

Volatile emissions from the crater and flank of Oldoinyo Lengai volcano, Tanzania

Journal of Geophysical Research B: Solid Earth

By:
, , , , , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

As a comparison to airborne infrared (IR) flux measurements, ground-based sampling of fumarole and soil gases was used to characterize the quiescent degassing of CO2 from Oldoinyo Lengai volcano. Aerial and ground-based measurements are in good agreement: ???75% of the aerially measured CO2 flux at Lengai (0.05-0.06 ?? 1012 mol yr-1 or 6000-7200 tonnes CO2 d-1) can be attributed to seven large crater vents. In contrast to Etna and Vulcano Island, where 15-50% of the total CO2 flux emanates diffusely through the volcanic flanks, diffuse emissions were measured only within 500 m of the crater rim at Lengai, contributing < 2% of the total flux. The lack of extensive flank emissions may reflect the dimensions of the magma chamber and/or the lack of a shallow fluid flow system. Thermodynamic restoration of fumarole analyses shows that gases are the most CO2-rich and H2O-poor reported for any volcano, containing 64-74% CO2, 24-34% H2O, 0.88-1.0% H2, 0.1-0.4% CO and < 0.1% H2S, HCl, HF, and CH4. Volatile emissions of S, Cl, and F at Oldoiyno Lengai are estimated as 4.5, 1.5, and 1.0 ?? 107 mol yr-1, respectively. Accuracy of the airborne technique was also assessed by measuring the C emission rate from a coal-burning power plant. CO2 fluxes were measured within ??10% near the plant; however, poor resolution at increased distances caused an underestimation of the flux by a factor of 2. The relatively large CO2 fluxes measured for alkaline volcanoes such as Oldoinyo Lengai or Etna may indicate that midplate volcanoes represent a large, yet relatively unknown, natural source of CO2.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Volatile emissions from the crater and flank of Oldoinyo Lengai volcano, Tanzania
Series title:
Journal of Geophysical Research B: Solid Earth
Volume
101
Issue:
6
Year Published:
1996
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Geophysical Research B: Solid Earth
First page:
13819
Last page:
13830
Number of Pages:
12