thumbnail

Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis

Earth and Planetary Science Letters

By:
, , , , , , , , , , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Small constructional volcanic landforms and very fresh-looking lava flows are present along one of the inferred active strike-slip faults that connect two small spreading centers (A and B) in the western portion of the Siqueiros transform domain. The most primitive lavas (picritic and olivine-phyric basalts), exclusively recovered from the young-looking flows within the A-B strike-slip fault, contain millimeter-sized olivine phenocrysts (up to 20 modal%) that have a limited compositional range (Fo91.5-Fo89.5) and complexly zoned Cr-Al spinels. High-MgO (9.5-10.6 wt%) glasses sampled from the young lava flows contain 1-7% olivine phenocrysts (Fo90.5-Fo89) that could have formed by equilibrium crystallization from basaltic melts with Mg# values between 71 and 74. These high MgO (and high Al2O3) glasses may be near-primary melts from incompatible-element depleted oceanic mantle and little modified by crustal mixing and/or fractionation processes. Phase chemistry and major element systematics indicate that the picritic basalts are not primary liquids and formed by the accumulation of olivine and minor spinel from high-MgO melts (10% < MgO < 14%). Compared to typical N-MORB from the East Pacific Rise, the Siqueiros lavas are more primitive and depleted in incompatible elements. Phase equilibria calculations and comparisons with experimental data and trace element modeling support this hypothesis. They indicate such primary mid-ocean ridge basalt magmas formed by 10-18% accumulative decompression melting in the spinel peridotite field (but small amounts of melting in the garnet peridotite field are not precluded). The compositional variations of the primitive magmas may result from the accumulation of different small batch melt fractions from a polybaric melting column.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis
Series title:
Earth and Planetary Science Letters
Volume
141
Issue:
1-4
Year Published:
1996
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Earth and Planetary Science Letters
First page:
91
Last page:
108
Number of Pages:
18