thumbnail

Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada

Applied and Environmental Microbiology

By:
, , , , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada
Series title:
Applied and Environmental Microbiology
Volume
61
Issue:
7
Year Published:
1995
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Applied and Environmental Microbiology
First page:
2745
Last page:
2753
Number of Pages:
9