thumbnail

Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991

Journal of Volcanology and Geothermal Research

By:
,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time

Abstract

Since its reactivation in 1988 the principal eruptions of Galeras Volcano occurred on May 4-9, 1989, July 16, 1992, and January 14, March 23, April 3, April 14 and June 7, 1993. The initial eruption was a phreatic event which clearly marked a new period of activity. A lava dome was extruded within the main crater in October 1991 and subsequently destroyed in an explosive eruption on July 16, 1992. The eruptions that followed were all vulcanian-type explosions. The seismicity accompanying the emplacement, extrusion, and destruction of the lava dome was dominated by a mix of long-period (LP) events and tremor displaying a variety of waveforms. Repetitive LP events with dominant periods in the range 0.2-1 s were observed in October and November 1991 and visually correlated with short energetic pulses of gas venting through a crack bisecting the dome surface. Each LP event was characterized by a weak precursory signal with dominant periods in the range 0.05-0.1 s lasting roughly 7 s. Using the fluid-driven crack model of Chouet (1988, 1992), we infer that two distinct cracks may have acted as sources for the LP and precursor signals. Spectral analyses of the data yield the following parameters for the LP source: crack length, 240-360 m; crack width, 130-150 m; crack aperture, 0.5-3.4 mm; crack stiffness, 100-500; sound speed of fluid, 880 m/s; and excess pressure, 0.01-0.19 MPa. Similar analyses yield the parameters of the precursor source: crack length, 20-30 m; crack width, 15-25 m; crack aperture, 2.3-8.7 mm; crack stiffness, 5-15; sound speed of fluid, 140 m/s; and excess pressure, 0.06-0.15 MPa. Combined with geologic and thermodynamic constraints obtained from field observations, these seismic parameters suggest a gas-release mechanism in which the episodic collapse of a foam layer trapped at the top of the magma column subjacent to the dome releases a slug of pressurized gas which escapes to the surface while dilating a preexisting system of cracks in the dome structure. Accordingly, the fracture observed on the crystallized dome body is the surface extension of the LP-source crack, where LP activity is induced by the rapid emission and expansion of gas flowing through this conduit. The width and aperture of the crack estimated in the model are in good agreement with the length and aperture of the fracture estimated from visual observations. The source parameters of the precursor signal are suggestive of a nozzle-like conduit connecting the LP-source crack to the underlying magma reservoir. Excitation of this conduit segment is attributed to the rapid emission and acceleration of the frothy fluid resulting from the collapse of the foam layer at the top of the reservoir. The calculated periodicity of foam collapse events is in agreement with the observed average rate of thirteen LP events per hour.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Long-period events, the most characteristic seismicity accompanying the emplacement and extrusion of a lava dome in Galeras Volcano, Colombia, in 1991
Series title:
Journal of Volcanology and Geothermal Research
Volume
77
Issue:
1-4
Year Published:
1997
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
121
Last page:
158
Number of Pages:
38