thumbnail

The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt

Remote Sensing of Environment

By:
, ,
DOI: 10.1016/S0034-4257(96)00143-5

Links

Abstract

Bir Safsaf, within the hyperarid 'core' of the Sahara in the Western Desert of Egypt, was recognized following the SIR-A and SIR-B missions in the 1980s as one of the key localities in northeast Africa, where penetration of dry sand by radar signals delineates previously unknown, sand-buried paleodrainage valleys ('radar-rivers') of middle Tertiary to Quaternary age. The Bir Safsaf area was targeted as a focal point for further research in sand penetration and geologic mapping using the multifrequency and polarimetric SIR-C/X-SAR sensors. Analysis of the SIR-C/X-SAR data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat TM images by a relatively thin, but extensive blanket of blow sand. Basement rock units (granitoids and gneisses) and the fractures associated with them at Bir Safsaf are shown here for the first time to be clearly delineated using C- and L-band SAR images. The detectability of most geologic features is dependent primarily on radar frequency, as shown for wind erosion patterns in bedrock at X-band (3 cm wavelength), and for geologic units and sand and clay-filled fractures in weathered crystal-line basement rocks at C-band (6 cm) and L-band (24 cm). By contrast, Quaternary paleodrainage channels are detectable at all three radar frequencies owing, among other things, to an usually thin cover of blow sand. The SIR-C/X-SAR data investigated to date enable us to make specific recommendations about the utility of certain radar sensor configurations for geologic and paleoenvironmental reconnaissance in desert regions.Analysis of the shuttle imaging radar-C/X-synthetic aperture radar (SIR-C/X-SAR) data from Bir Safsaf provides important new information on the roles of multiple SAR frequency and polarimetry in portraying specific types of geologic units, materials, and structures mostly hidden from view on the ground and on Landsat images by a relatively thin, but extensive blanket of blow sand. Basement rock units and associated fractures at the Bir Safsaf are clearly delineated using C- and L-band SAR images. The detectability of most geologic features depend primarily on radar frequency. The SIR-C/X-SAR data also provide recommendations about the utility of certain radar configurations for geologic and paleoenvironmental reconnaissance in deserts.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt
Series title:
Remote Sensing of Environment
DOI:
10.1016/S0034-4257(96)00143-5
Volume
59
Issue:
2
Year Published:
1997
Language:
English
Publisher:
Elsevier Science Inc
Publisher location:
New York, NY, United States
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
337
Last page:
363
Number of Pages:
27