thumbnail

Orbital forcing of deep-sea benthic species diversity

Nature

By:
,
DOI: 10.1038/385624a0

Links

Abstract

Explanations for the temporal and spatial patterns of species biodiversity focus on stability-time, disturbance-mosaic (biogenic microhabitat heterogeneity) and competition-predation (biotic interactions) hypotheses. The stability-time hypothesis holds that high species diversity in the deep sea and in the tropics reflects long-term climatic stability. But the influence of climate change on deep-sea diversity has not been studied and recent evidence suggests that deep-sea environments undergo changes in climatically driven temperature and flux of nutrients and organic-carbon during glacial-interglacial cycles. Here we show that Pliocene (2.85-2.40 Myr) deep-sea North Atlantic benthic ostracod (Crustacea) species diversity is related to solar insolation changes caused by 41,000-yr cycles of Earth's obliquity (tilt). Temporal changes in diversity, as measured by the Shannon- Weiner index, H(S), correlate with independent climate indicators of benthic foraminiferal oxygen-isotope ratios (mainly ice volume) and ostracod Mg:Ca ratios (bottomwater temperature). During glacial periods, H(S) = 0.2-0.6, whereas during interglacials, H(S) = 1.2-1.6, which is three to four times as high. The control of deep-sea benthic diversity by cyclic climate change at timescales of 103-104 yr does not support the stability-time hypothesis because it shows that the deep sea is a temporally dynamic environment. Diversity oscillations reflect large-scale response of the benthic community to climatically driven changes in either thermohaline circulation, bottom temperature (or temperature-related factors) and food, and a coupling of benthic diversity to surface productivity.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Orbital forcing of deep-sea benthic species diversity
Series title:
Nature
DOI:
10.1038/385624a0
Volume
385
Issue:
6617
Year Published:
1997
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
624
Last page:
627
Number of Pages:
4