thumbnail

Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, United States

Ground Water

By:
and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Hydrographs of stream discharge were analyzed to determine ground-water recharge for two small basins draining into Mirror Lake, New Hampshire. Two methods of hydrograph analysis developed for determining ground-water recharge were evaluated, the instantaneous recharge method and the constant recharge method. For the instantaneous recharge method, recharge is assumed to be instantaneous and uniform over the basin. For the constant recharge method, recharge is assumed to be constant and uniform over the basin for a period of weeks to months. Both methods require that a ground-water recession slope be determined. The recession slope is used directly in the calculation for the instantaneous recharge method, and it is used as a base of reference for fitting a type curve in the constant recharge method. Results of the study indicated that the estimates of ground-water recharge for both methods agree to within about 10 percent. Two approaches to the instantaneous recharge method, manual and automated, were also evaluated, and the results were statistically similar. The baseflow component of streamflow commonly is assumed to be equivalent to ground-water recharge; therefore, two methods developed for determining the baseflow component of streamflow, graphical partitioning and digital filtering, were evaluated also. Baseflow values determined by graphical partitioning of hydrographs were about 25 percent less than the ground-water recharge values. Baseflow values determined by two different approaches to the mathematical digital filtering method were generally less than baseflow determined by graphical partitioning. However, one of the approaches to digital filtering agreed reasonably well with graphical partitioning if an appropriate filter constant was used. The other approach to digital filtering resulted in baseflow values that were much less than the other baseflow values and was therefore deemed inappropriate for use on these small mountain watersheds.Hydrographs of stream discharge were analyzed to determine ground-water recharge for two small basins draining into Mirror Lake, New Hampshire. Two methods of hydrograph analysis developed for determining ground-water recharge were evaluated, the instantaneous recharge method and the constant recharge method. For the instantaneous recharge method, recharge is assumed to be instantaneous and uniform over the basin. For the constant recharge method, recharge is assumed to be constant and uniform over the basin for a period of weeks to months. Both methods require that a ground-water recession slope be determined. The recession slope is used directly in the calculation for the instantaneous recharge method, and it is used as a base of reference for fitting a type curve in the constant recharge method. Results of the study indicated that the estimates of ground-water recharge for both methods agree to within about 10 percent. Two approaches to the instantaneous recharge method, manual and automated, were also evaluated, and the results were statistically similar. The baseflow component of streamflow commonly is assumed to be equivalent to ground-water recharge; therefore, two methods developed for determining the baseflow component of streamflow, graphical partitioning and digital filtering, were evaluated also. Baseflow values determined by graphical partitioning of hydrographs were about 25 percent less than the ground-water recharge values. Baseflow values determined by two different approaches to the mathematical digital filtering method were generally less than baseflow determined by graphical partitioning. However, one of the approaches to digital filtering agreed reasonably well with graphical partitioning if an appropriate filter constant was used. The other approach to digital filtering resulted in baseflow values that were much less than the other baseflow values and was therefore deemed inappropriate for use on these small mountain watersheds.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, United States
Series title:
Ground Water
Volume
35
Issue:
2
Year Published:
1997
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Ground Water
First page:
291
Last page:
304