Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii

Journal of Geophysical Research B: Solid Earth

, , , and


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS


We use data from broadband seismometers deployed around the summit of Kilauea Volcano to quantify the mechanism associated with a transient in the flow of magma feeding the east rift eruption of the volcano. The transient is marked by rapid inflation of the Kilauea summit peaking at 22 ??rad 4.5 hours after the event onset, followed by slow deflation over a period of 3 days. Superimposed on the summit inflation is a series of sawtooth displacement pulses, each characterized by a sudden drop in amplitude lasting 5-10 s followed by an exponential recovery lasting 1-3 min. The sawtooth waveforms display almost identical shapes, suggesting a process involving the repeated activation of a fixed source. The particle motion associated with each sawtooth is almost linear, and its major swing shows compressional motion at all stations. Analyses of semblance and particle motion are consistent with a point source located 1 km beneath the northeast edge of the Halemaumau pit crater. To estimate the source mechanism, we apply a moment tensor inversion to the waveform data, assuming a point source embedded in a homogeneous half-space with compressional and shear wave velocities representative of the average medium properties at shallow depth under Kilauea. Synthetic waveforms are constructed by a superposition of impulse responses for six moment tensor components and three single force components. The origin times of individual impulses are distributed along the time axis at appropriately small, equal intervals, and their amplitudes are determined by least squares. In this inversion, the source time functions of the six tensor and three force components are determined simultaneously. We confirm the accuracy of the inversion method through a series of numerical tests. The results from the inversion show that the waveform data are well explained by a pulsating transport mechanism operating on a subhorizontal crack linking the summit reservoir to the east rift of Kilauea. The crack acts like a buffer in which a batch of fluid (magma and/or gas) accumulates over a period of 1-3 min before being rapidly injected into a larger reservoir (possibly the east rift) over a timescale of 5-10 s. The seismic moment and volume change associated with a typical batch of fluid are approximately 1014 N m and 3000 m3, respectively. Our results also point to the existence of a single force component with amplitude of 109 N, which may be explained as the drag force generated by the flow of viscous magma through a narrow constriction in the flow path. The total volume of magma associated with the 4.5-hour-long activation of the pulsating source is roughly 500,000 m3 in good agreement with the integrated volume flow rate of magma estimated near the eruptive site.

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Waveform inversion of very long period impulsive signals associated with magmatic injection beneath Kilauea Volcano, Hawaii
Series title:
Journal of Geophysical Research B: Solid Earth
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Geophysical Research B: Solid Earth
First page:
Last page: