thumbnail

Glacioisostasy and Lake-Level Change at Moosehead Lake, Maine

Quaternary Research

By:
, , and
DOI: 10.1006/qres.1998.1962

Links

Abstract

Reconstructions of glacioisostatic rebound based on relative sea level in Maine and adjacent Canada do not agree well with existing geophysical models. In order to understand these discrepancies better, we investigated the lake-level history of 40-km-long Moosehead Lake in northwestern Maine. Glacioisostasy has affected the level of Moosehead Lake since deglaciation ca. 12,500 14C yr B.P. Lowstand features at the southeastern end and an abandoned outlet at the northwestern end of the lake indicate that the lake basin was tilted down to the northwest, toward the retreating ice sheet, by 0.7 m/km at 10,000 14C yr B.P. Water level then rose rapidly in the southeastern end of the lake, and the northwestern outlet was abandoned, indicating rapid relaxation of landscape tilt. Lowstand features at the northwestern end of the lake suggest that the lake basin was tilted to the southeast at ca. 8750 14C yr B.P., possibly as the result of a migrating isostatic forebulge. After 8000 14C yr B.P., water level at the southeastern end was again below present lake level and rose gradually thereafter. We found no evidence suggesting that postglacial climate change significantly affected lake level. The rebound history inferred from lake-level data is consistent with previous interpretations of nearby relative sealevel data, which indicate a significantly steeper and faster-moving ice-proximal depression and ice-distal forebulge than geophysical models predict. ?? 1998 University of Washington.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Glacioisostasy and Lake-Level Change at Moosehead Lake, Maine
Series title:
Quaternary Research
DOI:
10.1006/qres.1998.1962
Volume
49
Issue:
2
Year Published:
1998
Language:
English
Publisher:
Elsevier
Publisher location:
Amsterdam, Netherlands
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Quaternary Research
First page:
157
Last page:
170