thumbnail

Relationships between wind velocity and underwater irradiance in a shallow lake (Lake Okeechobee, Florida, USA)

Journal of the American Water Resources Association

By:
, ,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time

Abstract

Relationships between wind velocity and the vertical light attenuation coefficient (K0) were determined at two locations in a large, shallow lake (Lake Okeechobee, Florida, USA). K0 was significantly correlated with antecedent wind conditions, which explained as much as 90 percent of the daily variation in K0. Sub-surface irradiance began to change within 60 to 90 minutes of the time when wind velocity exceeded or dropped below a threshold value. Maximum one hour changes in K0 were > 50 percent, however, 20 to 30 percent changes were more common. The magnitude of change in K0 varied spatially based on differences in sediment type. K0 never exceeded 2.8 at a location where bottom sediments were dominated by a mixture of coarse sand and shells. In comparison, K0 exceeded 9 during episodic wind events where the bottom sediment was comprised of fine grain mud. Underwater irradiance data can be used to determine threshold wind velocity and account for the influence sediment type has on K0. Once a threshold velocity has been established, the frequency, rate, and duration of expected change in underwater irradiance can be evaluated. This is critical information for scientists who are studying algal productivity or other light-related phenomena.Relationships between wind velocity and the vertical light attenuation coefficient (K0) were determined at two locations in a large, shallow lake (Lake Okeechobee, Florida, USA). K0 was significantly correlated with antecedent wind conditions, which explained as much as 90 percent of the daily variation in K0. Sub-surface irradiance began to change within 60 to 90 minutes of the time when wind velocity exceeded or dropped below a threshold value. Maximum one hour changes in K0 were >50 percent, however, 20 to 30 percent changes were more common. The magnitude of change in K0 varied spatially based on differences in sediment type. K0 never exceeded 2.8 at a location where bottom sediments were dominated by a mixture of coarse sand and shells. In comparison, K0 exceeded 9 during episodic wind events where the bottom sediment was comprised of fine grain mud. Underwater irradiance data can be used to determine threshold wind velocity and account for the influence sediment type has on K0. Once a threshold velocity has been established, the frequency, rate, and duration of expected change in underwater irradiance can be evaluated. This is critical information for scientists who are studying algal productivity or other light-related phenomena.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Relationships between wind velocity and underwater irradiance in a shallow lake (Lake Okeechobee, Florida, USA)
Series title:
Journal of the American Water Resources Association
Volume
34
Issue:
4
Year Published:
1998
Language:
English
Publisher:
American Water Resources Assoc
Publisher location:
Herndon, VA, United States
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
951
Last page:
961
Number of Pages:
11