Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada

Environmental Science & Technology
By:  and 

Links

Abstract

Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo- first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.Arsenic redox cycling was examined in source waters of the Los Angeles Aqueduct, specifically at Hot Creek, a tributary of the Owens River. Elevated arsenic concentrations in Hot Creek result from geothermal inputs. Total arsenic and As(III) concentrations were determined in the creek and in hot spring pools along its banks. Samples were processed in the field using anion-exchange columns to separate inorganic As(III) and As(V) species. Downstream of the geothermal inputs, decreasing contributions of As(III) to total arsenic concentrations indicated rapid in-stream oxidation of As(III) to As(V) with almost complete oxidation occurring within 1200 m. Based on assumed plug flow transport and a flow velocity of about 0.4 m/s, the pseudo-first-order half-life calculated for this reaction was approximately 0.3 h. Conservative transport of total dissolved arsenic was observed over the reach. Pseudo-first-order reaction rates determined for As(III) oxidation in batch studies conducted in the field with aquatic macrophytes and/or macrophyte surface matter were comparable to the in-stream oxidation rate observed along Hot Creek. In batch kinetic studies, oxidation was not observed after sterile filtration or after the addition of antibiotics, which indicates that bacteria attached to submerged macrophytes are mediating the rapid As(III) oxidation reaction.
Publication type Article
Publication Subtype Journal Article
Title Rapid oxidation of geothermal arsenic(III) in streamwaters of the eastern Sierra Nevada
Series title Environmental Science & Technology
DOI 10.1021/es970637r
Volume 32
Issue 5
Year Published 1998
Language English
Publisher ACS
Publisher location Washington, DC, United States
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Environmental Science and Technology
First page 657
Last page 662
Google Analytic Metrics Metrics page
Additional publication details