thumbnail

Agrichemicals in ground water of the midwestern USA: Relations to soil characteristics

Journal of Environmental Quality

By:
, , ,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time

Abstract

A comprehensive set of soil characteristics were examined to determine the effect of soil on the transport of agrichemicals to ground water. This paper examines the relation of local soil characteristics to concentrations and occurrence of nitrate, atrazine (2-chloro-4 ethylamino-6-isopropylamino- s-trazine), and atrazine residue [atrazine + deethylatrazine (2-amino-4- chloro-6-isopropylamino-s-triazine) + deisopropylatrazine (2-amino-4-chloro- 6-ethylamino-s-triazine)] from 99 wells completed in unconsolidated aquifers across the midwestern USA. The occurrence and concentrations of nitrate and atrazine in ground water were directly related to soil characteristics that determine the rate of water movement. The substantial differences in the relations found among soil characteristics and nitrate and atrazine in ground water suggest that different processes affect the transformation, adsorption, and transport of these contaminants. A multivariate analysis determined that the soil characteristics examined explained the amount of variability in concentrations for nitrate (19.0%), atrazine (33.4%), and atrazine residue (28.6%). These results document that, although soils do affect the transport of agrichemicals to ground water, other factors such as hydrology, land use, and climate must also be considered to understand the occurrence of agrichemicals in ground water.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Agrichemicals in ground water of the midwestern USA: Relations to soil characteristics
Series title:
Journal of Environmental Quality
Volume
28
Issue:
6
Year Published:
1999
Language:
English
Publisher:
American Soc of Agronomy Inc
Publisher location:
Madison, WI, United States
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
1908
Last page:
1915
Number of Pages:
8