Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy

Icarus
By: , and 

Links

Abstract

The causes of Io's variegated surface, especially the roles of sulfur, and the geochemical history of sulfur compounds on Io are not well understood. Suspecting that minor impurities in sulfur might be important, we have investigated the major and trace element chemistry and spectroscopic reflectance of natural sulfur from a variety of terrestrial volcanic-hydrothermal environments. Evidence suggests that Io may be substantially coated with impure sulfur. On Earth, a few tenths of a percent to a few percent of chalcophile trace elements (e.g., As and Se) comonly occur in sulfur and appear to stabilize material of yellow, brown, orange, and red hues, which may persist even at low temperatures. Percentage levels of chalcophile impurities are reasonably expected to occur on Io in vapor sublimate deposits and flows derived from such deposits. Such impurities join a host of other mechanisms that might explain Io's reds and yellows. Two-tenths to two percent opaque crystalline impurities, particularly pyrite (FeS2), commonly produces green, gray, and black volcanic sulfur on Earth and might explain areas of Io having deposits of these colors. Pyrite produces a broad absorption near 1 ??m that gradually diminishes out to 1.6 ??m - similar but not identical to the spectrum of Io seen in Galileo NIMS data. Percentage amounts of carbonaceous impurities and tens of percent SiO2 (as silicates) also strongly affect the spectral properties of Earth's sulfur. Io's broad absorption between 0.52 and 0.64 ??m remains unexplained by these data but could be due to sodium sulfides, as suggested previously by others, or to As, Se, or other impurities. These impurities and others, such as P and Cl (which could exist on Io's surface in amounts over 1% that of sulfur), greatly alter the molecular structure of molten and solid sulfur. Minor impurities could impact Io's geology, such as the morphology of sulfur lava flows and the ability of sulfur to sustain high relief. We have not found any natural sulfur containing significant Na beyond that attributable to silicate inclusions. In sum, the unique physical-chemical properties of S-rich systems and the strong affinity of certain elements for S may have broad implications for the appearance, spectroscopic interpretation, and geologic processes of Io. Identification of impurities in sulfur may be helpful in tracing the geochemical evolution of surface deposits on Io. Perhaps foretelling of new areas of investigation, Cl has recently been reported in the Io torus (M. Kueppers and N. M. Schneider 1999, Eos Trans.80, 5207), suggesting the presence on Io of either salts, such as halite, or sulfur chlorides. Further evidence of minor iogenic impurities should be sought in Io's neutral cloud and plasma torus as well as in further scrutiny of Io's reflectance spectra. ?? 1999 Academic Press.
Publication type Article
Publication Subtype Journal Article
Title Volcanogenic Sulfur on Earth and Io: Composition and Spectroscopy
Series title Icarus
DOI 10.1006/icar.1999.6183
Volume 142
Issue 1
Year Published 1999
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Icarus
First page 249
Last page 280
Google Analytic Metrics Metrics page
Additional publication details