thumbnail

Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

Environmental Toxicology and Chemistry

By:
, , , , ,
DOI: 10.1897/1551-5028(1999)018<0474:CPIBAP>2.3.CO;2

Links

Abstract

In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl
Series title:
Environmental Toxicology and Chemistry
DOI:
10.1897/1551-5028(1999)018<0474:CPIBAP>2.3.CO;2
Volume
18
Issue:
3
Year Published:
1999
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Environmental Toxicology and Chemistry
First page:
474
Last page:
480
Number of Pages:
7