thumbnail

Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems

Environmental Science and Technology

By:
, , , , , ,
DOI: 10.1021/es0013125

Links

Abstract

We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (k(deg)) values increased with total mercury (Hg(t)) contamination both among and within ecosystems. The highest k(deg)'s (2.8-5.8 d-1) were observed in San Carlos Creek, at acid mine drainage impacted sites immediately downstream of the former New Idria mercury mine, where Hg(t) ranged from 4.5 to 21.3 ppm (dry wt). A reductive degradation pathway (presumably mer-detoxification) dominated degradation at these sites, as indicated by the nearly exclusive production of 14CH4 from 14C-MeHg, under both aerobic and anaerobic conditions. At the upstream control site, and in the less contaminated ecosystems (e.g. the Everglades), k(deg)'s were low (???0.2 d-1) and oxidative demethylation (OD) dominated degradation, as evident from 14CO2 production. k(deg) increased with microbial CH4 production, organic content, and reduced sulfur in the Carson River system and increased with decreasing pH in San Carlos Creek. OD associated CO2 production increased with pore-water SO42- in Everglades samples but was not attributable to anaerobic methane oxidation, as has been previously proposed. This ecosystem comparison indicates that severely contaminated sediments tend to have microbial populations that actively degrade MeHg via mer-detoxification, whereas OD occurs in heavily contaminated sediments as well but dominates in those less contaminated.We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (kdeg) values increased with total mercury (Hgt) contamination both among and within ecosystems. The highest kdeg???s (2.8-5.8 d-1) were observed in San Carlos Creek, at acid mine drainage impacted sites immediately downstream of the former New Idria mercury mine, where Hgt ranged from 4.5 to 21.3 ppm (dry wt). A reductive degradation pathway (presumably mer-detoxification) dominated degradation at these sites, as indicated by the nearly exclusive production of 14CH4 from 14C-MeHg, under both aerobic and anaerobic conditions. At the upstream control site, and in the less contaminated ecosystems (e.g. the Everglades), kdeg???s were low (???0.2 d-1) and oxidative demethylation (OD) dominated degradation, as evident from 14CO2 production. kdeg in increased with microbial CH4 production, organic content, and reduced sulfur in the Carson River system and increased with decreasing pH in San Carlos Creek. OD associated CO2 production increased with pore-water SO42- in Everglades samples but was not attributable to anaerobic methane oxidation, as has been previously proposed. This ecosystem comparison indicates that severely contaminated sediments tend to have microbial populations that actively degrade MeHg via mer-detoxification, whereas OD occurs in heavily contaminated sediments as well but dominates in those less contaminated.Methylmercury degradation dynamics, in terms of methane and carbon dioxide end-products, were investigated in three Hg-contaminated ecosystems: the Florida everglades, San Carlos Creek, CA, and Carson River, NV. The everglades represented a moderately contaminated ecosystem, while the other two exhibited significantly higher Hg levels. Sediment samples were collected from each study site and analyzed. Results showed that the degradation rate constants increased with total Hg contamination both among and within the ecosystems, with highest rates observed in San Carlos Creek. The degradation dynamics were dominated by a reductive degradation pathway at San Carlos Creek, while in the everglades, oxidative demethylation was imp

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems
Series title:
Environmental Science and Technology
DOI:
10.1021/es0013125
Volume
34
Issue:
23
Year Published:
2000
Language:
English
Publisher:
ACS
Publisher location:
Washington, DC, United States
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
4908
Last page:
4916
Number of Pages:
9