thumbnail

Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions

Water Research

By:
, , , , ,
DOI: 10.1016/S0043-1354(00)00147-0

Links

Abstract

Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications. Copyright (C) 2000 Elsevier Science Ltd.Alachlor is one of the most commonly used herbicides in both Europe and North America. Because of its toxic properties, its fate and attenuation in natural waters is practically important. This paper assesses factors that affect alachlor decay rate in aquatic systems using field-scale experimental units. In particular, we used field mesocosms (11.3 m3 outdoor fiberglass tanks) to examine the affect of oxygen level and other factors on decay rate in water columns. This is one of the first studies ever performed where diverse water column conditions have been successfully simulated using common mesocosm-scale facilities. Four treatments were assessed, including aerobic systems (aerobic); low nutrient, oxygen-stratified systems (stratified-LN); moderate nutrient, oxygen-stratified systems (stratified-HN); and anaerobic systems (anaerobic). The lowest half-lives were observed in the anaerobic units (9.7 days) followed by the aerobic (21 days), stratified-HN (22 days), and stratified-LN (46 days) units. Our results indicate that alachlor is transformed most rapidly under anaerobic conditions, although the ambient phosphorus level also appears to influence decay rate. In this study, two common alachlor breakdown products, ethane sulfonic acid (ESA) and oxanilic acid, were also monitored. Oxanilic acid was produced in greater quantities than ESA under all treatments with the highest levels being produced in the stratified-HN units. In general, our results suggest that previous laboratory data, which indicated that high rates of alachlor decay can occur under oxygen-free methanogenic conditions, is translatable to field-scale applications.Aquatic field mesocosms were used to examine the influence of DO concentration and the presence of nutrients on alachlor transformation. Four treatments were used: wholly aerobic water columns, thermally and oxygen stratified water columns with low nutrient levels, stratified water columns with moderate nutrient levels, and wholly anaerobic water columns. The anaerobic treatment produced the highest rate of alachlor decay, followed by the aerobic and stratified treatments. The lowest decay rate occurred in the aerobic, low-nutrient stratified units.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Alachlor transformation patterns in aquatic field mesocosms under variable oxygen and nutrient conditions
Series title:
Water Research
DOI:
10.1016/S0043-1354(00)00147-0
Volume
34
Issue:
16
Year Published:
2000
Language:
English
Publisher:
Elsevier Science Ltd
Publisher location:
Exeter, United Kingdom
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
4054
Last page:
4062
Number of Pages:
9