thumbnail

Studies of volcanoes of Alaska by satellite radar interferometry

By:
, , , ,
Edited by:
Sawaya-Lacoste H.

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes. This paper summarizes our recent: InSAR studies over the Alaska-Aleutian volcanoes, which include New Trident, Okmok, Akutan, Augustine, Shishaldin, and Westdahl volcanoes. The first InSAR surface deformation over the Alaska volcanoes was applied to New Trident. Preliminary InSAR study suggested that New Trident volcano experienced several centimeters inflation from 1993 to 1995. Using the InSAR technique, we studied the 1997 eruption of Okmok. We have measured ???1.4 m deflation during the eruption, ???20 cm pre-eruptive inflation during 1992 to 1995, and >10 cm post-eruptive inflation within a year after the eruption, and modeled the deformations using Mogi sources. We imaged the ground surface deformation associated with the 1996 seismic crisis over Akutan volcano. Although seismic swarm did not result in an eruption, we found that the western part of the volcano uplifted ???60 cm while the eastern part of the island subsided. The majority of the complex deformation field at the Akutan volcano was modeled by dike intrusion and Mogi inflation sources. Our InSAR results also indicate that the pyroclastic flows from last the last eruption have been undergoing contraction/subsidence at a rate of about 3 cm per year since 1992. InSAR measured no surface deformation before and during the 1999 eruption of Shishaldin and suggested the eruption may be a type of open system. Finally, we applied satellite radar interferometry to Westdahl volcano which erupted 1991 and has been quiet since. We discovered this volcano had inflated about 15 cm from 1993 to 1998. In summary, satellite radar interferometry can not only be used to study a volcanic eruption, but also to detect aseismic deformation at quiescent volcanoes preceding a seismic swarm; it is a useful technique to study volcanic eruptions as well as to guide scientists to better focus their monitoring efforts.

Additional Publication Details

Publication type:
Conference Paper
Publication Subtype:
Conference Paper
Title:
Studies of volcanoes of Alaska by satellite radar interferometry
Issue:
461
Year Published:
2000
Language:
English
Larger Work Title:
European Space Agency, (Special Publication) ESA SP
First page:
81
Last page:
90
Number of Pages:
10
Conference Title:
ERS-Envisat Symposium 'Looking Down to Earth in the New Millennium'
Conference Location:
Gothenburg
Conference Date:
16 October 2000 through 20 October 2000