thumbnail

Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia)

Mineralogy and Petrology

By:
, , , ,

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

In this paper we present petrological and geochemical information on a bimodal basaltrhyolite suite associated with A-type granites of Late Cretaceous age from the South Pannonian Basin in Slavonija (Croatia). Basalts and alkali-feldspar rhyolites, associated in some places with ignimbrites, occur in volcanic bodies that are interlayered with pyroclastic and fossiliferous Upper Cretaceus sedimentary rocks. The petrology and geochemistry of the basalts and alkali-feldspar rhyolites are constrained by microprobe analyses, major and trace element analyses including REE, and radiogenic and stable isotope data. Basalts that are mostly transformed into metabasalts (mainly spilites), are alkalic to subalkalic and their geochemical signatures, particularly trace element and REE patterns, are similar to recent back-arc basalts. Alkali-feldspar rhyolites have similar geochemical features to the associated cogenetic A-type granites, as shown by their large variation of Na2O and K2O (total 8-9%), very low MgO and CaO, and very high Zr contents ranging between 710 and 149ppm. Geochemical data indicate an amphibole lherzolite source within a metasomatized upper mantle wedge, with the influence of upper mantle diapir with MORB signatures and continental crust contamination. Sr incorporated in the primary basalt melt had an initial 87Sr/86Sr ratio of 0.7039 indicating an upper mantle origin, whereas the 87Sr/86Sr ratio for the alkalifeldspar rhyolites and associated A-type granites is 0.7073 indicating an apparent continental crust origin. However, some other geochemical data favour the idea that they might have mainly originated by fractionation of primary mafic melt coupled with contamination of continental crust. Only one rhyolite sample appears to be the product of melting of continental crust. Geological and geodynamic data indicate that the basalt-rhyolite association was probably related to Alpine subduction processes in the Dinaridic Tethys which can be correlated with recent back-arc basins. The difference in geological and isotope ages between the bimodal basalt-rhyolite volcanism with A-type granite plutonism (72 Ma) and the final synkinematic S-type granite plutonism (48 Ma) can be taken as a lifetime of the presumed BARB system of the Dinaridic Tethys. Remnants of this presumed subduction zone can be traced for 300 km along the surrounding northernmost Dinarides.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Geochemistry and geodynamics of a Late Cretaceous bimodal volcanic association from the southern part of the Pannonian Basin in Slavonija (Northern Croatia)
Series title:
Mineralogy and Petrology
Volume
68
Issue:
4
Year Published:
2000
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Mineralogy and Petrology
First page:
271
Last page:
296
Number of Pages:
26