Degradation of mangrove tissues and implications for peat formation in Belizean island forests

Journal of Ecology
By:  and 

Links

Abstract

1. Macrofaunal leaf consumption and degradation of leaves, woody twigs and roots were studied in mangrove island forests on a Belizean island. Factors influencing accumulation of organic matter deposited both above and below ground in this oligotrophic, autochothonous system were assessed. 2. Leaf degradation rates of Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) measured in mesh bags, were much faster in the lower than the upper intertidal zone. Mass loss was most rapid in A. germinans but zonal effects were much larger than species differences. 3. Exposure to invertebrates such as crabs and amphipods tripled overall rates of leaf litter breakdown. In the lower intertidal, crabs completely consumed some unbagged leaves within 23 days. Crabs also had an effect on some upper intertidal sites, where degradation of leaves placed in artificial burrows was 2.4 times faster than when placed on the soil surface. 4. In contrast to leaves (27??5% remaining after 230 days), roots and woody twigs were highly refractory (40??2% and 51??6% remaining after 584 and 540 days, respectively). Root degradation did not vary by soil depth, zone or species. Twigs of R. mangle and A. germinans degraded faster on the ground than in the canopy, whereas those of L. racemosa were highly resistant to decay regardless of position. 5. Peat formation at Twin Cays has occurred primarily through deposition and slow turnover of mangrove roots, rather than above-ground tissues that are either less abundant (woody twigs) or more readily removed (leaves).
Publication type Article
Publication Subtype Journal Article
Title Degradation of mangrove tissues and implications for peat formation in Belizean island forests
Series title Journal of Ecology
DOI 10.1046/j.0022-0477.2001.00602.x
Volume 89
Issue 5
Year Published 2001
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Ecology
First page 818
Last page 828
Google Analytic Metrics Metrics page
Additional publication details