thumbnail

Some simple guides to finding useful information in exploration geochemical data

Natural Resources Research

By:
and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

Most regional geochemistry data reflect processes that can produce superfluous bits of noise and, perhaps, information about the mineralization process of interest. There are two end-member approaches to finding patterns in geochemical data-unsupervised learning and supervised learning. In unsupervised learning, data are processed and the geochemist is given the task of interpreting and identifying possible sources of any patterns. In supervised learning, data from known subgroups such as rock type, mineralized and nonmineralized, and types of mineralization are used to train the system which then is given unknown samples to classify into these subgroups. To locate patterns of interest, it is helpful to transform the data and to remove unwanted masking patterns. With trace elements use of a logarithmic transformation is recommended. In many situations, missing censored data can be estimated using multiple regression of other uncensored variables on the variable with censored values. In unsupervised learning, transformed values can be standardized, or normalized, to a Z-score by subtracting the subset's mean and dividing by its standard deviation. Subsets include any source of differences that might be related to processes unrelated to the target sought such as different laboratories, regional alteration, analytical procedures, or rock types. Normalization removes effects of different means and measurement scales as well as facilitates comparison of spatial patterns of elements. These adjustments remove effects of different subgroups and hopefully leave on the map the simple and uncluttered pattern(s) related to the mineralization only. Supervised learning methods, such as discriminant analysis and neural networks, offer the promise of consistent and, in certain situations, unbiased estimates of where mineralization might exist. These methods critically rely on being trained with data that encompasses all populations fairly and that can possibly fall into only the identified populations. ?? 2001 International Association for Mathematical Geology.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Some simple guides to finding useful information in exploration geochemical data
Series title:
Natural Resources Research
Volume
10
Issue:
2
Year Published:
2001
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Natural Resources Research
First page:
137
Last page:
147