thumbnail

Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies

BioScience

By:
, , , , , , , , , and

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS

Abstract

North America and Europe are in the midst of a large-scale experiment. Sulfuric and nitric acids have acidified soils, lakes, and streams, thereby stressing or killing terrestrial and aquatic biota. It is therefore critical to measure and to understand the recovery of complex ecosystems in response to decreases in acidic deposition. Fortunately, the NADP, CASTNet, and AIRMoN-dry networks are in place to measure anticipated improvements in air quality and in atmospheric deposition. Unfortunately, networks to measure changes in water quality are sparse, and networks to monitor soil, vegetation, and fish responses are even more limited. There is an acute need to assess the response of these resources to decreases in acid loading. It would be particularly valuable to assess the recovery of aquatic biota - which respond directly to acid stress - to changes in surface water chemistry (Gunn and Mills 1998). We used long-term research from the HBEF and other sites across the northeastern United States to synthesize data on the effects of acidic deposition and to assess ecosystem responses to reductions in emissions. On the basis of existing data, it is clear that in the northeastern United States ??? reductions of SO2 emissions since 1970 have resulted in statistically significant decreases in SO42- in wet and bulk deposition and in surface waters ??? emissions of NOX and concentrations of NO3- in wet and bulk deposition and in surface waters have shown no increase or decrease since the 1980s ??? estimates of NH3 emissions are uncertain, although atmospheric deposition of NH4+ remains important for forest management and stream NO3- loss ??? acidic deposition has accelerated the leaching of base cations from soils, thus delaying the recovery of ANC in lakes and streams from decreased emissions of SO2 (at the HBEF the available soil Ca pool appears to have declined 50% over the past 50 years) ???sulfur and N from atmospheric deposition have accumulated in forest soils across the region, and the slow release of these stored elements from soil has delayed the recovery of lakes and streams after emissions have been reduced ??? acidic deposition has increased the concentration of toxic forms of Al in soil waters, lakes, and streams ??? acidic deposition has leached cellular Ca from red spruce foliage, which has made trees susceptible to freezing injury and led to more than 50% mortality of canopy trees in some areas of the Northeast ??? deficiencies of Ca2+ and Mg2+ have caused extensive mortality of sugar maple in Pennsylvania, and acidic deposition contributed to the depletion of these cations from soil ??? forty-one percent of lakes in the Adirondack Mountains and 15% of lakes in New England have exhibited chronic or episodic acidification or both; 83% of the affected lakes are acidic because of atmospheric deposition ??? the ANC of surface waters in New England has increased only modestly, and the Adirondack and Catskill regions have experienced no significant improvement, after decreases in atmospheric S deposition in recent decades ??? acidification of surface waters has resulted in a decrease in the survival, size, and density of fish and in the loss of fish and other aquatic biota from lakes and streams ??? emissions of air pollutants have important linkages to other large-scale environmental problems, including coastal eutrophication, mercury contamination, visibility impairment, climate change, and tropospheric ozone Moreover, we anticipate that recovery from acidic deposition will be a complex, two-phase process in which chemical recovery precedes biological recovery. The time for biological recovery is better defined for aquatic than for terrestrial ecosystems. For acid-affected aquatic ecosystems, we expect that stream populations of macroinvertebrates and lake populations of zooplankton will recover 3-10 years after favorable chemical conditions are reestablished; recovery of fish populations would follow. For terrestrial ecos

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies
Series title:
BioScience
Volume
51
Issue:
3
Year Published:
2001
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
BioScience
First page:
180
Last page:
198