thumbnail

Leaf cellulose ??D and ??18O trends with elevation differ in direction among co-occurring, semiarid plant species

Geochimica et Cosmochimica Acta

By:
, , ,
DOI: 10.1016/S0016-7037(02)00964-X

Links

Abstract

The potential to reconstruct paleoclimate from analyses of stable isotopes in fossil leaf cellulose could be enhanced by adequate calibration. This potential is likely to be particularly great in mid-latitude deserts, where a rich store of fossil leaves is available from rodent middens. Trends in ??D and ??18O of leaf cellulose were examined for three species growing across climatic gradients caused by elevation and slope aspect in southeastern Utah, USA. The species differed in morphology (Pinus edulis vs. Yucca glauca), photosynthetic pathway (C3 Y. glauca vs. CAM Yucca baccata) or both (P. edulis vs. Y. baccata). The ??DLCN (leaf cellulose nitrate) and ??18OLC (leaf cellulose) values of P. edulis decreased with elevation. Stem water ??D values either increased (in spring) or did not change with elevation (in summer). Needle water ??D values usually decreased with elevation and differed greatly with leaf age. These results suggest that ?? cellulose values of P. edulis record the effects of climate on the isotopic composition of leaf water but not climate effects on meteoric water. In contrast to P. edulis, ??DLCN values of Y. glauca increased with elevation. The ??18O LC values ofc Y. glauca also increased with elevation but less significantly and only on south-facing slopes. The ?? cellulose values in both P. edulis and Y. glauca were most significantly related to changes in temperature, although temperature and precipitation were negatively correlated in the study area. Where all three species co-occurred, their ??DLCN values differed but their ??18O LC values were the same. The disparity in ??DLCN between Y. baccata and the other species corresponds to differences in biochemical fractionations associated with photosynthetic pathway. Biochemical fractionations may also contribute to differences between the two C3 species. Knowledge of factors affecting responses of individual plant species to environment may be required to infer climate from ??DLCN and ??18OLC. ?? 2002 Elsevier Science Ltd.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Leaf cellulose ??D and ??18O trends with elevation differ in direction among co-occurring, semiarid plant species
Series title:
Geochimica et Cosmochimica Acta
DOI:
10.1016/S0016-7037(02)00964-X
Volume
66
Issue:
22
Year Published:
2002
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
First page:
3887
Last page:
3900
Number of Pages:
14