Last interglacial climates

Quaternary Research
By: , and 

Links

Abstract

The last interglacial, commonly understood as an interval with climate as warm or warmer than today, is represented by marine isotope stage (MIS) 5e, which is a proxy record of low global ice volume and high sea level. It is arbitrarily dated to begin at approximately 130,000 yr B.P. and end at 116,000 yr B.P. with the onset of the early glacial unit MIS 5d. The age of the stage is determined by correlation to uranium-thorium dates of raised coral reefs. The most detailed proxy record of interglacial climate is found in the Vostok ice core where the temperature reached current levels 132,000 yr ago and continued rising for another two millennia. Approximately 127,000 yr ago the Eemian mixed forests were established in Europe. They developed through a characteristic succession of tree species, probably surviving well into the early glacial stage in southern parts of Europe. After ca. 115,000 yr ago, open vegetation replaced forests in northwestern Europe and the proportion of conifers increased significantly farther south. Air temperature at Vostok dropped sharply. Pulses of cold water affected the northern North Atlantic already in late MIS 5e, but the central North Atlantic remained warm throughout most of MIS 5d. Model results show that the sea surface in the eastern tropical Pacific warmed when the ice grew and sea level dropped. The essentially interglacial conditions in southwestern Europe remained unaffected by ice buildup until late MIS 5d when the forests disappeared abruptly and cold water invaded the central North Atlantic ca. 107,000 yr ago. ?? 2002 University of Washington.
Publication type Article
Publication Subtype Journal Article
Title Last interglacial climates
Series title Quaternary Research
DOI 10.1006/qres.2001.2316
Volume 58
Issue 1
Year Published 2002
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Quaternary Research
First page 2
Last page 13
Google Analytic Metrics Metrics page
Additional publication details