thumbnail

Summary of recent research in Long Valley Caldera, California

Journal of Volcanology and Geothermal Research

By:
, ,
DOI: 10.1016/S0377-0273(03)00168-9

Links

Abstract

Since 1978, volcanic unrest in the form of earthquakes and ground deformation has persisted in the Long Valley caldera and adjacent parts of the Sierra Nevada. The papers in this special volume focus on periods of accelerated seismicity and deformation in 1980, 1983, 1989-1990, and 1997-1998 to delineate relations between geologic, tectonic, and hydrologic processes. The results distinguish between earthquake sequences that result from relaxation of existing stress accumulation through brittle failure and those in which brittle failure is driven by active intrusion. They also indicate that in addition to a relatively shallow (7-10-km) source beneath the resurgent dome, there exists a deeper (???15-km) source beneath the south moat. Analysis of microgravimety and deformation data indicates that the composition of the shallower source may involve a combination of silicic magma and hydrothermal fluid. Pressure and temperature fluctuations in wells have accompanied periods of crustal unrest, and additional pressure and temperature changes accompanying ongoing geothermal power production have resulted in land subsidence. The completion in 1998 of a 3000-m-deep drill hole on the resurgent dome has provided useful information on present and past periods of circulation of water at temperatures of 100-200??C within the crystalline basement rocks that underlie the post-caldera volcanics. The well is now being converted to a permanent geophysical monitoring station. ?? 2003 Elsevier B.V. All rights reserved.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Summary of recent research in Long Valley Caldera, California
Series title:
Journal of Volcanology and Geothermal Research
DOI:
10.1016/S0377-0273(03)00168-9
Volume
127
Issue:
3-4
Year Published:
2003
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Journal of Volcanology and Geothermal Research
First page:
165
Last page:
173
Number of Pages:
9