Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications

Geochemistry: Exploration, Environment, Analysis

DOI: 10.1144/1467-7873/03002



The Lik deposit in northern Alaska is a largely unexposed shale-hosted Zn-Pb-Ag massive sulphide deposit that is underlain by continuous permafrost. Residual soils overlying the mineralized zone have element enrichments that are two to six times greater than baseline values. The most prominent elements are Ag, Mo, P, Se, Sr, V by total 4-acid digestion and Tl by a weak partial digestion (Enzyme Leach or EL) because they show multi-point anomalies that extend across the entire mineralized zone, concentration ranges are 0.5-2.6 ppm Ag, 4-26 ppm Mo, 0.1-0.3% P, 3-22 ppm Se, 90-230 ppm Sr, 170-406 ppm V, and 1.6-30 ppb Tl. Lead, Sb, and Hg are also anomalous (up to 178 ppm, 30 ppm, and 1.9 ppm, respectively), but all are characterized by single point anomalies directly over the mineralized zone, with only slightly elevated concentrations over the lower mineralized section. Zinc (total) has a consistent baseline response of 200 ppm, but it is not elevated in soils overlying the mineralized zone. However, Zn by EL shows a distinct single-point anomaly over the ore zone that suggests it was highly mobile and partly adsorbed on oxides or other secondary phases during weathering. In situ analyses (by laser ablation ICP-MS) of pyrite and sphalerite from drill core suggest that sphalerite is the primary residence for Ag, Cd, and Hg in addition to Zn, and pyrite contains As, Fe, Sb, and Tl. The level and degree of oxidation, and the proportion of reacting pyrite and carbonate minerals are two factors that affected the mobility and transport of metals. In oxidizing conditions, Zn is highly mobile relative to Hg and Ag, perhaps explaining the decoupling of Zn from the other sphalerite-hosted elements in the soils. Soils are acidic (to 3.9 pH) directly over the deposit due to the presence of acid-producing pyrite, but acid-neutralizing carbonate away from the mineralized zone yield soils that are near neutral. The soils therefore formed in a complex system involving oxidation and weathering (mechanical and chemical) of sulphide minerals, dissolution of carbonate minerals, and precipitation of iron and manganese oxide minerals.

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Metal dispersion and mobility in soils from the Lik Zn-Pb-Ag massive sulphide deposit, NW Alaska: Environmental and exploration implications
Series title:
Geochemistry: Exploration, Environment, Analysis
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Geochemistry: Exploration, Environment, Analysis
First page:
Last page: