thumbnail

Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis

Water Research

By:
, , and
DOI: 10.1016/S0043-1354(02)00494-3

Links

Abstract

This paper addresses the problem of how to capture the complex relationships that exist between process variables and to diagnose the dynamic behaviour of a municipal wastewater treatment plant (WTP). Due to the complex biological reaction mechanisms, the highly time-varying, and multivariable aspects of the real WTP, the diagnosis of the WTP are still difficult in practice. The application of intelligent techniques, which can analyse the multi-dimensional process data using a sophisticated visualisation technique, can be useful for analysing and diagnosing the activated-sludge WTP. In this paper, the Kohonen Self-Organising Feature Maps (KSOFM) neural network is applied to analyse the multi-dimensional process data, and to diagnose the inter-relationship of the process variables in a real activated-sludge WTP. By using component planes, some detailed local relationships between the process variables, e.g., responses of the process variables under different operating conditions, as well as the global information is discovered. The operating condition and the inter-relationship among the process variables in the WTP have been diagnosed and extracted by the information obtained from the clustering analysis of the maps. It is concluded that the KSOFM technique provides an effective analysing and diagnosing tool to understand the system behaviour and to extract knowledge contained in multi-dimensional data of a large-scale WTP. ?? 2003 Elsevier Science Ltd. All rights reserved.

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis
Series title:
Water Research
DOI:
10.1016/S0043-1354(02)00494-3
Volume
37
Issue:
7
Year Published:
2003
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Water Research
First page:
1608
Last page:
1618
Number of Pages:
11