Comparison of in situ uranium KD values with a laboratory determined surface complexation model

Applied Geochemistry
By: , and 

Links

Abstract

Reactive solute transport simulations in groundwater require a large number of parameters to describe hydrologic and chemical reaction processes. Appropriate methods for determining chemical reaction parameters required for reactive solute transport simulations are still under investigation. This work compares U(VI) distribution coefficients (i.e. KD values) measured under field conditions with KD values calculated from a surface complexation model developed in the laboratory. Field studies were conducted in an alluvial aquifer at a former U mill tailings site near the town of Naturita, CO, USA, by suspending approximately 10 g samples of Naturita aquifer background sediments (NABS) in 17-5.1-cm diameter wells for periods of 3 to 15 months. Adsorbed U(VI) on these samples was determined by extraction with a pH 9.45 NaHCO3/Na2CO3 solution. In wells where the chemical conditions in groundwater were nearly constant, adsorbed U concentrations for samples taken after 3 months of exposure to groundwater were indistinguishable from samples taken after 15 months. Measured in situ K D values calculated from the measurements of adsorbed and dissolved U(VI) ranged from 0.50 to 10.6 mL/g and the KD values decreased with increasing groundwater alkalinity, consistent with increased formation of soluble U(VI)-carbonate complexes at higher alkalinities. The in situ K D values were compared with KD values predicted from a surface complexation model (SCM) developed under laboratory conditions in a separate study. A good agreement between the predicted and measured in situ KD values was observed. The demonstration that the laboratory derived SCM can predict U(VI) adsorption in the field provides a critical independent test of a submodel used in a reactive transport model. ?? 2004 Elsevier Ltd. All rights reserved.
Publication type Article
Publication Subtype Journal Article
Title Comparison of in situ uranium KD values with a laboratory determined surface complexation model
Series title Applied Geochemistry
DOI 10.1016/j.apgeochem.2004.03.004
Volume 19
Issue 10
Year Published 2004
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Applied Geochemistry
First page 1643
Last page 1653
Google Analytic Metrics Metrics page
Additional publication details