thumbnail

Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica

Limnology and Oceanography

By:
, , , and
DOI: 10.4319/lo.2004.49.5.1884

Links

Abstract

In extreme environments, retention of nutrients within stream ecosystems contributes to the persistence of aquatic biota and continuity of ecosystem function. In the McMurdo Dry Valleys, Antarctica, many glacial meltwater streams flow for only 5-12 weeks a year and yet support extensive benthic microbial communities. We investigated NO3- uptake and denitrification in Green Creek by analyzing small-scale microbial mat dynamics in mesocosms and reach-scale nutrient cycling in two whole-stream NO 3- enrichment experiments. Nitrate uptake results indicated that microbial mats were nitrogen (N)-limited, with NO 3- uptake rates as high as 16 nmol N cm-2 h-1. Denitrification potentials associated with microbial mats were also as high as 16 nmol N cm-2 h-1. During two whole-stream NO3--enrichment experiments, a simultaneous pulse of NO2- was observed in the stream water. The one-dimensional solute transport model with inflow and storage was modified to simulate two storage zones: one to account for short time scale hydrologic exchange of stream water into and out of the benthic microbial mat, the other to account for longer time scale hydrologic exchange with the hyporheic zone. Simulations indicate that injected NO3- was removed both in the microbial mat and in the hyporheic zone and that as much as 20% of the NO3- that entered the microbial mat and hyporheic zone was transformed to NO2- by dissimilatory reduction. Because of the rapid hydrologic exchange in microbial mats, it is likely that denitrification is limited either by biotic assimilation, reductase limitation, or transport limitation (reduced NO2- is transported away from reducing microbes).

Additional Publication Details

Publication type:
Article
Publication Subtype:
Journal Article
Title:
Denitrification and hydrologic transient storage in a glacial meltwater stream, McMurdo Dry Valleys, Antarctica
Series title:
Limnology and Oceanography
DOI:
10.4319/lo.2004.49.5.1884
Volume
49
Issue:
5
Year Published:
2004
Language:
English
Larger Work Type:
Article
Larger Work Subtype:
Journal Article
Larger Work Title:
Limnology and Oceanography
First page:
1884
Last page:
1895
Number of Pages:
12